
 1

Advanced Network Simulation
under User-Mode Linux

Andreas Steffen*, Eric Marchionni†, Patrik Rayo†

*Institut für Internet-Technologien und -Anwendungen
Hochschule für Technik Rapperswil

Oberseestrasse 10
CH-8640 Rapperswil

andreas.steffen@hsr.ch

†Zürcher Hochschule Winterthur
CH-8401 Winterthur

Abstract: The debugging of data communications software in an active
networking environment can be a tricky and quite tiresome affair, often so because
intermittent disturbances occurring in productive systems cannot be reproduced
reliably and consistently or cannot be traced thoroughly enough. Thus for any
Linux-based networking appliances like routers, firewalls, intrusion detection
systems, VPNs, VoIP gear, etc., the User-Mode-Linux (UML) framework
presented in this paper might be the optimum solution for running and testing these
systems in a virtual networking environment under near real-time conditions. E.g
when a user of the OpenSource Linux strongSwan VPN software reported an IPsec
re-keying error occurring in conjunction with a NAT router, this rare problem
could be reproduced in a virtual UML test setup within two hours of simulation
and a bug fix was found, tested and released on the same day. UML-based
networks are also a powerful didactic tool in education where students can gain
practical experience with complex network setups without the need of heavy
investments in hardware equipment. This paper shows how a UML network can be
set up with relative ease either for interactive explorative use or for automated
regression testing.

1 Introduction - A Typical Networking Scenario

Figure 1 shows a typical VPN scenario where a site-to-site IPsec tunnel between the two
security gateways moon and sun connects the two corporate subnets 10.1.0.0/16 and
10.2.0.0/16 over the “insecure” network 192.168.0.0/24. These two protected subnets are
represented by the clients alice and venus on one side and the host bob on the other
side. In addition to that, the gateway moon offers IPsec-based remote access services to
the “road warriors” carol and dave. If we assume that the authentication of the VPN
peers is based on X.509 certificates, then a HTTP server winnetou is required for the
distribution of the certificate revocation list (CRL).

Published in“Heute schon das Morgen sehen – 19. DFN-Arbeitstagung über
Kommunikationsnetze, Düsseldorf”, Jan von Knop, Wilhelm Haverkamp, Eike Jessen (Editors),
GI-Edition - Lecture Notes in Informatics P-73, Bonner Köllen Verlag 2005, pp. 321-333.

© Copyright 2005 Gesellschaft für Informatik e.V. (GI), Ahrstrasse 45, D-53175 Bonn.

 2

Figure 1: A typical VPN scenario comprising a site-to-site tunnel and remote access clients.

Just in order to enact such a relatively simple networking scenario a minimum of eight
hardware platforms would be required. The User-Mode-Linux approach presented in this
paper will allow us to simulate the whole environment under near real-time conditions
by means of eight virtual Linux hosts running on a single hardware box. The only
prerequisite is that the services under test are able to run under a Linux operating system.

2 User-Mode-Linux

2.1 User-Mode-Linux Architecture

Figure 2 depicts the architecture of the User-Mode-Linux (UML) scheme. A Linux
kernel consists of a large generic part that is hardware-independent, plus certain
components that are matched towards a specific processor architecture, e.g. the Intel
i386 hardware platform. The GNU C compiler gcc is then used to compile the source
code into object code executable on the target processor. Device drivers are either
compiled into the kernel code or are loaded as separate object modules during run time.

Applications run as user processes on top of the kernel. A virtual host running with a
User-Mode-Linux kernel is just another user process according to figure 2, so that even
if the virtual machine crashes, the kernel of the host system is not affected. Because the
UML kernel does not run on the hardware itself but is layered on top of the host kernel,
its architecture-specific part is hardware-independent, i.e. the target architecture chosen
for UML kernel compilation is ARCH=um where um stands for user-mode.

The most challenging areas in the design of the UML kernel are the interception of
system calls and the integration of drivers for virtual devices that might actually be
mapped onto physical devices of the underlying host system. We will treat UML
network devices and the UML root file system in more detail in sections 2.3 and 2.4,
respectively. Additional information on the UML project as well as some UML tools can
be found on the home page hosted at http://user-mode-linux.sourceforge.net.

 3

Hardware (e.g. i386)

i386-specific Architecture Drivers

Generic Linux Kernel

Process
#1

Process
#2 UML Kernel

Process
#1

Process
#2

User-Mode
Architecture

Emulated
Drivers

Generic Linux Kernel

Hardware (e.g. i386)

i386-specific Architecture Drivers

Generic Linux Kernel

Process
#1

Process
#2 UML Kernel

Process
#1

Process
#2

User-Mode
Architecture

Emulated
Drivers

Generic Linux Kernel

User-Mode
Architecture

Emulated
Drivers

Generic Linux Kernel

Figure 2: User-Mode-Linux Architecture.

The versions of the UML kernel and the host kernel do not have to be the same. Thus it
is possible to run a Linux-2.6-based UML kernel on top of a Linux-2.4 host kernel or
vice versa. Each virtual host instance can run even with its individual UML kernel
version.

2.2 SKAS Mode – Separate Kernel Address Space

Traditionally User-Mode-Linux has had the design that each UML process was run as a
visible process on the host alongside the UML kernel itself. Thus the UML kernel was
present in the address space of each of its processes, and, by default, was writeable. This
is obviously a security problem, since, with write access to kernel data, a process can
break out to the host. UML's “jail” mode fixes this problem by making UML data read-
only while a process is running, but this imposes a huge performance penalty. Also, the
kernel is still there, and can be read, so this isn't acceptable for honey pots, since a bad
guy can easily tell that the system is a UML.

Through the introduction of the Separate Kernel Address Space (SKAS) mode, the UML
kernel now runs in an entirely different host address space from its processes.This solves
the security and honey pot fingerprinting problems by making the UML kernel totally
inaccessible to UML processes. Their address spaces are identical to what they would be
on the host. This also provides a noticeable speedup by eliminating the signal delivery
that used to happen for every UML system call. The effect of the SKAS patch is visible
on the host in the way that not dozens of UML processes will appear in the process
status (ps) but only the following four:

• The UML kernel thread, which runs in the separate kernel address space,
executes kernel code, and does system call interception on UML processes.

• The UML userspace thread, which runs all UML process code and switches
between host address spaces on each UML context switch.

 4

• The ubd driver asynchrounous IO thread.
• The write SIGIO emulation thread.

SKAS mode requires that a patch must be applied to the host kernel. This patch
implements the address space support needed by SKAS mode. The patch is available
from www.user-mode-linux.org/~blaisorblade/patches/.

On the UML instance the message
Checking for the skas3 patch in the host...found
Checking for /proc/mm...found

is going to appear during the booting process if the SKAS mode functionality has been
successfully detected in the host kernel.

2.3 UML Network Devices

UML #2UML #2

uml_switchuml_switch

eth0

UML #1UML #1 eth0

tap0 eth0Routing
NAT

Routing
NAT

Host

InternetInternet

Figure 3: Use of the tun/tap network device and of a uml_switch.

Each UML instance can have an arbitrary number of virtual Ethernet interfaces. We will
use this important feature to simulate complex network scenarios. As figure 3 shows, the
UML instances can be connected via their network interfaces to virtual subnets by means
of a virtual UML switch. This switch has exactly the same functionality as a real layer 2
switch and can optionally be configured to act as a passive hub. A UML switch is set up
on the host system with the following command:

uml_switch -tap tap0 -unix /tmp/umlswitch0 &

ifconfig tap0 192.168.0.254 netmask 255.255.255.0

UML instances can be accessed from the host system via tun/tap network devices. In the
example of figure 3 the host’s tap0 device is connected to the UML switch so that both
instances #1 and #2 can be reached. Another method is to bind the virtual eth0
interface directly to a tun/tap device on the host. Using IP forwarding in the case of
routable IP addresses or Network Address Translation (NAT) if private network
addresses are used in the virtual networks, the virtual hosts become visible in the
Internet. UML-based virtual host services are already being offered by several ISPs.

 5

2.4 UML Root File System

Each UML instance uses a root file system of its own that resides as a single large file on
the hard disk of the host system. The complete Linux file system contains all required
system commands and application programs as well as a sufficient amount of free space
to store user data. In principle, a root file system could be shared by several UML
instances by using a Copy-On-Write (COW) mechanism where the original files exist
only once and just individual modifications and additions are stored separately for each
instance at the time they actually occur.

For our network simulation purposes we decided to create a 500 MB root file system for
each of the eight virtual instances of the default network topology shown in figure 4. The
total disk space requirement on the host system thus amounts to 4 GB. The generic root
file system was derived from a standard Gentoo Linux distribution (www.gentoo.org),
including among other tools a C compiler (gcc), a debugger (gdb), a network analyzer
(tcpdump), a firewall (iptables), secure shell support (ssh, scp) and a web server
(apache2). This basic set of system commands and command line tools takes up about
350 MB of the 500 MB root file system, leaving 150 MB for user data.

Since a UML instance runs as a normal user process that can potentially crash and is
often terminated improperly e.g. by using the uml_mconsole halt command that
just kills the UML process, the use of a robust journaling file system such as reiserfs or
ext3 is strongly recommended. Also for reasons of robustness we resigned from using
the COW mechanism, giving each instance a root file system copy of its own, instead.

2.4 Starting up a UML instance

In the preceding paragraphs we have described all components that are required to
launch a UML instance. The following practical example shall demonstrate how a virtual
host is actually started up with a single command line command:

linux-uml-2.6.11 umid=moon \
 ubd0=gentoo-rootfs-moon \
 eth0=daemon,,unix,/tmp/umlswitch0 \
 mem=64M

The executable UML kernel, compiled from the standard Linux 2.6.11 sources with
ARCH=um and named linux-uml-2.6.11 is the actual user process that will be
started. The UML instance will be named moon, the Gentoo root file system stored in
the single large file gentoo-rootfs-moon will be mounted, an eth0 network
interface connected to umlswitch0 will be created and 64 MB of RAM will be
allocated to the instance.

 6

3 strongSwan UML Testing Environment

3.1 Overview

The UML testing environment going to be presented in this chapter was initially created
by Eric Marchionni and Patrik Rayo (both recent graduates from the Zürcher Hochschule
Winterthur, Switzerland) for the strongSwan OpenSource VPN solution and now makes
up the testing part of the software distribution available from www.strongswan.org.
Details on their original implementation can be found in the diploma thesis [MR04]. In
the following paragraphs the default network topology, the interactive UML simulation
mode, as well as the fully automated software regression test mode will be discussed.

3.2 Default UML Network Topology

Figure 4 shows the default UML network topology created for the strongSwan testing
environment. It consists of the eight virtual hosts alice, venus, moon, carol,
winnetou, dave, sun, and bob, populating the three separate subnets of the VPN
scenario already presented in figure 1, plus three tun/tap devices that connect the host
with each of the UML instances via the UML switches sitting at the center of the
corresponding sub-networks.

Figure 4: Default UML network topology with 3 networks and 8 UML instances.

 7

If not all of the eight hosts are needed for a given simulation scenario then the desired
instances can be started by enumerating them on the command line, e.g.

start-testing alice moon carol winnetou

Additional hosts can be added with relative ease either by configuring and starting them
manually or by extending the startup-scripts accordingly.

3.3 Interactive Mode

The most flexible way to use the strongSwan UML environment is the interactive mode
shown in figure 5. On a graphical desktop either a KDE konsole or an xterm is
opened for each started instance. It is also possible to open a terminal console on the host
system via remote access and switch between the various UML instances using the
screen command.

The interactive mode is ideally suited for the debugging of networked applications
because all communication signals exchanged between the hosts as well as all log files
and debug information on the hosts are fully available in a controlled environment. By
including gcc or any other compiler in the UML root file system, applications can be
modified, recompiled and tested on the fly right on the UML instances.

Figure 5: UML network in interactive mode with eight UML consoles and a host window.

 8

3.4 Automated Software Regression Tests

For software regression tests that are run prior to each new official software release in
order to verify the compliance with the specifications and also to detect bugs in an early
stadium, the UML interactive mode is too error prone and too tedious because of the
manual configuration steps involved. Therefore as part of [MA04], an automated testing
framework was created for the strongSwan IPsec software development environment.
This framework can at least in principle be adapted to any software project that requires
a networking test bed.

During the creation of the root file systems for the UML instances, the generic Linux
base file system (e.g. based on Gentoo or Debian) is supplemented by specific default
configurations that are needed by the individual hosts in order to fulfil their particular
roles as firewall, router, security gateway, web server, etc. Since most configuration files
reside in the /etc/ subtree of a Linux file system and specific services and applications
are started via the /etc/init.d/ runlevel mechanism, the current strongSwan
framework automatically copies extensions and modifications to the /etc/ subtree on a
per-host-basis during the creation of the corresponding UML root file system. The
directory structure storing the data used by the configuration scripts is shown in figure 6.

testingtesting

teststests

nat-one-rwnat-one-rw hostshosts

moonmoon etcetc

Specific configurations for test „nat-one-rw“

teststests

nat-one-rwnat-one-rw hostshosts

moonmoon etcetc

Specific configurations for test „nat-one-rw“

hostshosts

defaultdefault etcetc

moonmoon etcetc

Default configuration for all test cases

Configurations common to all hosts

Specific configurations for host „moon“

hostshosts

defaultdefault etcetc

moonmoon etcetc

Default configuration for all test cases

Configurations common to all hosts

Specific configurations for host „moon“

Figure 6: Configuration files for the UML instances.

The default configurations that are put into place by the configuration scripts are also
very helpful in the interactive mode, because the applications particular to a given
instance can be immediately started and put to use.

 9

A regression test suite consists of a large number of scenarios that should be preferably
executed automatically and the test results analyzed without manual intervention. The
strongSwan testing framework creates a subdirectory for each scenario as the example in
figure 7 demonstrates.

nat-one-rwnat-one-rw

evaltest.datevaltest.dat
sun::ipsec auto --status::\
nat-t.*STATE_QUICK_R2.*IPsec SA established::YES

alice::ping -c 1 PH_IP_BOB::\
64 bytes from PH_IP_BOB: icmp_seq=1::YES

moon::tcpdump::IP sun.strongswan.org.4500 > \
moon.strongswan.org.*: UDP::YES

evaltest.datevaltest.dat
sun::ipsec auto --status::\
nat-t.*STATE_QUICK_R2.*IPsec SA established::YES

alice::ping -c 1 PH_IP_BOB::\
64 bytes from PH_IP_BOB: icmp_seq=1::YES

moon::tcpdump::IP sun.strongswan.org.4500 > \
moon.strongswan.org.*: UDP::YES

posttest.datposttest.dat
sun::ipsec setup stop
alice::ipsec setup stop
moon::iptables -t nat -F

posttest.datposttest.dat
sun::ipsec setup stop
alice::ipsec setup stop
moon::iptables -t nat -F

pretest.datpretest.dat
moon::iptables -t nat -A POSTROUTING -o eth0 \
-s 10.1.0.0/16 -j SNAT -–to-source PH_IP_MOON

alice::ipsec setup start
sun::ipsec setup start
alice::sleep 5
alice::ipsec auto --up nat-t

pretest.datpretest.dat
moon::iptables -t nat -A POSTROUTING -o eth0 \
-s 10.1.0.0/16 -j SNAT -–to-source PH_IP_MOON

alice::ipsec setup start
sun::ipsec setup start
alice::sleep 5
alice::ipsec auto --up nat-t

description.txtdescription.txt
The roadwarrior alice sitting behind the NAT router
moon sets up a tunnel to gateway sun. UDP encapsu-
lation is used to traverse the NAT router. The NAT-
ed host alice pings client bob behind gateway sun.

description.txtdescription.txt
The roadwarrior alice sitting behind the NAT router
moon sets up a tunnel to gateway sun. UDP encapsu-
lation is used to traverse the NAT router. The NAT-
ed host alice pings client bob behind gateway sun.

Figure 7: Scripts for automated software regression testing.

The file description.txt gives a concise summary of the scenario. The next file pretest.dat
contains a list of commands that are executed sequentially on the various UML instances
used by the given scenario. In our example a NAT rule is inserted on the router moon.
Next the ipsec daemon is started on the VPN end points alice and sun. A sleep
command of 5 seconds makes sure that both daemons will be up before the last
command is executed which builds up the NAT-ed IPsec connection using the Internet
Key Exchange protocol (IKE).

In a second phase the commands of the file evaltest.dat are executed which by applying
pattern matching rules evaluate if the desired test results have been achieved. In our
example it is first checked if the IKE negotiation has been successful both on sun and
alice. Next a ping from alice to bob executed on alice checks the connectivity
through the NAT-ed IPsec tunnel. The last check on router moon verifies if the
standardized UDP port 4500 has been used for the NAT traversal.

In the third and last phase the commands in posttest.dat reset all UML instances
involved in the scenario to the idle state at the outset of the test. This is achieved by
stopping the ipsec daemon on the VPN peers and by flushing the router’s NAT rule.

 10

The three phases pretest, evaltest and posttest are controlled by a script running on the
host system. The commands are executed on the various UML hosts using the secure
shell (ssh), e.g.

ssh root@alice ipsec setup start

At the end of each test a selection of log and status files is copied from the UML
instances back to the host system using ssh and scp (secure copy).

3.5 Display of Test Results

For each test scenario a HTML page is automatically created and copied together with
the most relevant configuration, log and status data to the UML web server winnetou
that has by default the IP address 192.168.0.l50.

Figure 8: Test results for IPsec NAT-T scenario published on UML instance winnetou.

 11

As the sample screen shot in figure 8 shows, all relevant information pertinent to a given
test scenario can be conveniently accessed and examined using a standard web browser,
without the need to configure a web server on the host system itself. Just do not forget to
include winnetou in the list of started UML instances!

The next web page depicted in figure 9 is located one hierarchy level higher and
aggregates the results from the individual tests. Currently 35 tests covering various
strongSwan features have been defined. Depending on the hardware of the underlying
host system a full automated test run takes between 30-60 minutes. With one glance it
can then be verified if a software release has passed all regression tests. A click on a
Failed test result will show the console.log that will hopefully give a first hint towards
the possible reason of the failure. A click on the test name itself will open up the view
from figure 8 that gives the detailed log and status information. If the error cause still
cannot be established then a change to the interactive mode will offer the chance to
explore the problem even more in depth by activating higher debug levels or by setting
break points with the help of the code debugger gdb.

Figure 9: Completed regression tests for the Linux strongSwan IPsec stack.

 12

4 Practical Use of UML Networks

4.1 Exploring, Testing and Debugging Network Applications

The example of the strongSwan testing environment presented in the previous chapter
clearly shows the manifold advantages of a UML-based test bed. In this section we want
to give an overview on several other network applications that would profit significantly
from a virtual environment.

VPN Scenarios
• NAT-Traversal (RFC 3947)
• L2TP-over-IPsec (RFC 3193)
• Dead Peer Detection (DPD, RFC 3706)
• HTTP or LDAP-based retrieval of Certificate Revocation Lists (CRLs)
• Online Certificate Status Protocol (OCSP, RFC 2560)
• Simple Certificate Enrolment Protocol (SCEP).

Authentication, Authorization and Accounting (AAA)
• Kerberos
• RADIUS
• IEEE 802.1x port-based network access control
• Identity Management scenarios involving LDAP repositories

Firewall Rules and Intrusion Detection
• Firewall rules and NAT based on iptables
• Port scans using nmap
• Network attacks exploiting various vulnerabilities in application programs
• Intrusion Detection and Prevention Systems (IDS/IDP, e.g. using snort)
• Honey pots

Anonymizing Networks
• Pseudo-anonymous remailers
• High Latency Anonymizers (Mixmaster, etc)
• Low Latency Onion Router networks (Tor available from http://tor.eff.org)

Dynamic Routing Protocols1
• RIP, OSPF, etc

IPv6 Test Beds2
• Mobility for IPv6 (roaming, binding updates, home agents, etc)

1 Since routing networks must possess a certain amount of complexity in order to be non-trivial, a sensible
scenario might require an extension of the UML network topology
2 Manual configuration of IPv6 virtual interfaces is possible but UML start-up scripts would need to be
extended to support IPv6 addresses.

 13

4.2 Education and Training

UML-based networks open up fascinating new opportunities for education and training
in the field of IP-based communications technology. Since modern communication
protocols have grown quite complex, especially if security aspects are involved and the
theory itself is often quite dry, it is of utmost importance that students and trainees can
get practical hands-on experience in the communications lab. In a university course the
typical size of a lab group is between 16-24 students. Due to the enormous amount of the
hardware that would be required to equip all students in a group, it has been difficult and
often impossible to set up and test complex networking scenarios during a standard lab
session of 2-4 lessons. Also if communications hardware is shared among groups as a
cost-saving alternative, many experiments do not scale well with an increasing number
of participants. E.g. when experimenting with ARP spoofing attacks, a single group
usually succeeds in poisoning the cache of a victim whereas ten concurrent groups just
create an abominable chaos.

UML networks running on personal computers do away with the need for a lot of
networking hardware and eliminate the traditional stability problems related to
equipment being shared by concurrent student groups. The students are given the
possibility to explore the given network scenario at their own chosen pace in a confined
environment. On the other hand it is possible to connect the virtual setups of each group
over the physical lab network thus simulating the establishment of WAN connections.

Starting with the summer term 2005, UML networks have been successfully used in the
Internet Security Lab at the Hochschule für Technik Rapperswil (HSR) for setting up and
exploring various simple and complex VPN scenarios [Ste03] and also for teaching basic
firewall rules working with iptables. The feedback from the students has been very
encouraging and led to the decision to extend the UML-based labs to cover more topics.

5 Conclusions

This paper was written with the intention to highlight the manifold opportunities offered
by UML-based virtual networks in a communications technology environment. Starting
out from the existing strongSwan IPsec testing framework [MR04] developed at the
Zürcher Hochschule Winterthur in Switzerland, we have shown that even most complex
networking scenarios can be run without any restrictions in near real-time. In our opinion
the User-Mode-Linux concept can be easily extended to cover a multitude of other
interesting communication setups.

Institutions of higher learning engaged in teaching communications technologies can
especially profit both from the increased flexibility and independence that virtual
network environments offer to the students, as well as from the considerable savings in
hardware investments that can be achieved.

Future areas of work will include research into the use of the new XEN virtualization
environment [Ba03] that promises to give a more tight control on consumed resources.

 14

Bibliography

[Ba03] Barham, P. et al.: Xen and the Art of Virtualization, SOSP’03, Bolton Landing, New
York, 2003.

[MR04] Marchionni, E.; Rayo, P: User-Mode-Linux Test Suite für Linux strongSwan. Diplomar-
beit, Zürcher Hochschule Winterthur, 2004.

[Ste03] Steffen, A.: Virtual Private Networks – Coping with Complexity. In (Knop, J. v. Hrsg.):
Security, E-Learning, E-Services – 17. DFN-Arbeitstagung über Kommunikationsnetze,
Düsseldorf 2003. GI-Edition - Lecture Notes in Informatics (LNI), P-44, Bonner Köllen
Verlag, 2003, S. 289-302.

