Large-Scale Road Warrior Access based on X.509 Certificates and DHCP-over-IPsec

Prof. Andreas Steffen
Zurich University of Applied Sciences
Winterthur, Switzerland
The „Road Warrior“ Remote Access Case

- Road warriors sign on to their home network via IKE with varying IP addresses assigned dynamically by their local ISP.
- Authentication is usually based on RSA public keys and X.509 certificates issued by the home network.
- Virtual IP assigned statically or dynamically by the home network. Remote hosts thus become part of an extruded net.
Requirements for Large-Scale VPN Deployment

- Automatic assignment of virtual IP addresses
 - Avoid error-prone individual configuration of VPN clients
- Authentication based on X.509 certificates
 - Preshared secrets do not scale well with the number of VPN clients
 - Preshared secrets do not work with dynamic IPs and IKE Main Mode
- Safe storage of private keys
 - VPN road warrior certificates and private keys should preferably be stored on smart cards or USB tokens.
- User authentication and access control policies
 - VPN access control usually based on X.509 user certificates
 - Timely updates of certificate revocation lists are of utmost importance.
 - Better: Separate user authentication and access control
Linux FreeS/WAN as a VPN Gateway

 - OpenSource IPsec stack for Linux 2.2 and 2.4 kernels
 - X.509 certificate support developed by ZHW !!!
 - Easy installation via RedHat/SuSE/Debian/Mandrake RPMs
 - Number of VPN tunnels is limited by hardware resources, only.
 - Linux Free/SWAN can also be used as a VPN client

- Road Warrior and Virtual IP support using X.509 certificates:

 conn road-warrior
 right=%any
 rightrsasigkey=%cert
 rightsubnetwithin=10.3.0.0/16
 left=%defaultroute
 leftsubnet=10.1.0.0/16
 leftcert=gatewayCert.pem
 auto=add

- Simple configuration
Virtual IP Assignment via DHCP-over-IPsec

- Internet Draft: draft-ietf-ipsec-dhcp-13.txt
- Currently supported by SSH Sentinel and Linux FreeS/WAN

DHCP DISCOVER

ISAKMP SA: (Main Mode Authentication) RW ↔ GW

DHCP Relay

0.0.0.0/0

DHCP Server

DHCP SA: (lifetime of minutes, only) RW:udp/bootpc ↔ GW:udp/bootps - 0.0.0.0/0

Intranet Servers

IPsec SA:
10.3.0.2 - RW ↔ GW - 10.1.0.0/16

10.3.0.2
DHCP-over-IPsec Features

- **Features**
 - By providing a Virtual IP plus additional network information like e.g. local DNS and WINS server addresses, **DHCP-over-IPsec** can offer the same functionality as the heavy-weight **L2TP-over-IPsec** protocol.
 - On the VPN gateway a **DHCP Relay** is required which relays DHCP messages to and from the DHCP server in the home network.

- **Open Questions**
 - A Virtual IP interface does not have a physical MAC address. The DHCP-over-IPsec draft does not specify how the unique client hardware address should be formed.
 - Unicast DHCP messages like e.g. DHCPREQUEST use the normal IPsec tunnel SA. What about broadcast DHCPDISCOVER messages?

- **DHCP Relay Agent for Linux FreeS/WAN**
User Management - CRL Distribution Points

- Users are admitted on the basis of a valid X.509 certificate.
- In order to lock out a user, the corresponding certificate must be revoked and the CRL made quickly available to all VPN end points.
- A X.509v3 extension can contain one or several `crlDistributionPoints` that consist either of a HTTP, FTP, or an LDAP Uniform Resource Identifier (URI). Example in OpenSSL notation:

```plaintext
crlDistributionPoints =
    URI:http://www.rolex.ch/ca/cert.crl
```

- Upon reception of a peer certificate, a VPN client will try to get an updated Certificate Revocation List from the URI(s) listed in the `crlDistributionPoints` field.
- Version 1.1.0 of X.509 patch for Linux FreeS/WAN 2.00 supports URI-based dynamic CRL fetching.
Deployment – University of Freiburg, Germany

- 44 WLAN access points, 1 Linux VPN gateway, no DHCP-over-IPsec
- 202 active and 88 revoked X.509 certificates
- FreeS/WAN Linux clients / SSH Sentinel Windows clients
- Further information: http://mopoinfo.wlan.informatik.uni-freiburg.de
IPsec Policies
Coping with Complexity
IPsec Policy Model - Intermediate CAs

- conn research
 - right=%any
 - rightca="C=CH, O=Rolex, CN=R&D CA"
 - leftsubnet=10.1.1.0/24

- conn sales
 - right=%any
 - rightca="C=CH, O=Rolex, CN=Sales CA"
 - leftsubnet=10.1.2.0/24

- Advantage: decentralized management of access control rights possible

- Drawback: user or host certificate is bound to intermediate CA

- Linux FreeS/WAN: Access control based on intermediate CAs might be implemented in 2003
IPsec Policy Model - Identity Wild Cards

- conn research
 right=%any
 rightid="C=CH, O=Rolex, OU=R&D, CN=*" /* DN */
 leftsubnet=10.1.1.0/24

- conn sales
 right=%any
 rightid=*@sales.rolex.ch /* USER FQDN */
 leftsubnet=10.1.2.0/24

- conn it-hosts
 right=%any
 rightid=@*.it.rolex.ch /* FQDN */
 leftsubnet=10.1.3.4/32

- Wild cards as defined by draft-ietf-ipsp-config-policy-model-06.txt
- Drawback: Identity is strongly bound to user or host certificate
- Linux FreeS/WAN: wild cards will be introduced in 1Q 2003

IPsec Policy Models – Attribute Certificates

• X.509 Attribute Certificates (AC)
 • ACs separate the tasks of authentication (based on user certificates) and authorization (based on attribute certificates).
 • Attribute certificates grant short-term access control rights but are themselves bound to long-lived user certificates.
 • Due to the short lifetime of attribute certificates, revocation will usually not be necessary.

• Kerberos V5 tickets with Privilege Attribute Certificates (PAC)
 • For its Windows 2000 authentication and authorization solution Microsoft added a proprietary PAC containing group memberships to Kerberos V5 tickets. Kerberos can be used to authenticate IPsec connections and to grant access control rights.

• Linux FreeS/WAN:
 • Solutions based on Attribute Certificates and/or Kerberos Tickets are being studied at the Zurich University of Applied Sciences.