
strongSwan VPNs

scalable and modularized!

Andreas Steffen
andreas.steffen@strongswan.org

Copyright © 2008 by Andreas Steffen
Institute for Internet Technologies and Applications

Hochschule für Technik Rapperswil, Switzerland

The new strongSwan 4.2 IKEv2 release has been completely modularized. As
an alternative to the classical ipsec.conf and ipsec.secrets configuration files,
dynamical back end plugins now allow to load configuration data and user
credentials from SQLite or MySQL databases. Together with a powerful XML-
based web front end, thousands of IPsec tunnels can easily be managed,
making strongSwan a truly scalable, industry-grade VPN solution.

In addition to these new management features, all encryption and
authentication algorithms have been implemented as pluggable modules,
thus making it possible to integrate hardware-based crypto-accelerators, use
the FIPS 140-2 certified OpenSSL library or attach smart card based secure
authentication and storage modules.

The strongSwan Mediation Manager is a FastCGI based web interface that
writes configuration data and RSA public keys into an SQL database which in
turn is accessible by the strongSwan Mediation Server. This leads to a user-
friendly solution that makes it possible for two users hidden behind NAT
routers each to establish a direct peer-to-peer IPsec tunnel, employing a
coordinated UDP hole punching approach.

What is strongSwan?

strongSwan is a complete Open Source VPN solution for the Linux operating
system. Released under the GNU General Public License (GPLv2) the source
code can be freely downloaded from www.strongswan.org. The strongSwan
software implements the IKEv1 (RFC 2409) and IKEv2 (RFC 4306) Internet Key
Exchange protocols that are needed to set up secure IPsec tunnel connections
in an automated way. Illustration 1 shows the the two main application areas:

Reprint of LinuxTag2008 Paper 1

http://www.strongswan.org/

● Site-to-site VPNs that interconnect subnetworks at geographically disjoint
locations via the public Internet. Typically the VPN gateways in front of
the subnets have static IP addresses.

● Remote-access VPNs that allow “road warriors” to connect to their home
network from any place on the globe. Typically road warriors have
dynamically-allocated IP addresses, usually hide behind NAT routers and
often make use of multi-homing network interfaces.

Reprint of LinuxTag2008 Paper 2

Illustration 1: Site-to-site and remote-access VPNs

Internet

Head
Quarters Subsidiary

„Road Warrior“

VPN Tunnel

VPN Tunnel

VPN Gateway
11.22.33.44

VPN Gateway
55.66.77.88

VPN Client

10.1.0.0/16 10.2.0.0/16

10.3.0.2
10.1.0.5 10.2.0.3

55.66.x.x

Internet

Head
Quarters Subsidiary

„Road Warrior“

VPN Tunnel

VPN Tunnel

VPN Gateway
11.22.33.44

VPN Gateway
55.66.77.88

VPN Client

10.1.0.0/16 10.2.0.0/16

10.3.0.2
10.1.0.5 10.2.0.3

55.66.x.x

Illustration 2: User-Mode-Linux based VPN testbed

The strongSwan developers extensively use the User-Mode-Linux (UML) based
virtual testbed shown in Illustration 2 for testing a broad range of VPN
scenarios. Both site-to-site and remote-access setups can be simulated. The
current test suite employed by our software regression tests comprises 84
IKEv1 and 62 IKEv2 examples based on IPv4 addresses and, due to the
increasing deployment of IPv6 technology, a growing number of IPv6 scenarios.

strongSwan Software Architecture

The main focus of this paper is on the new modular software architecture
introduced by the strongSwan 4.2 release. Since strongSwan has a long history
going back to the famous FreeS/WAN project started in 1999 (see the
FreeS/WAN family tree in Illustration 3), certain design constraints had to be
obeyed in order to guarantee the full backward compatibility to previous
strongSwan versions. The following two decisive milestones that occurred
during the lifetime of the strongSwan project are worth mentioning:

● The strongSwan project was founded by the author in March 2004 as a
fork from the FreeS/WAN project (www.freeswan.org) which was officially
discontinued by its sponsor John Gilmore with the final freeswan-2.04
version released in April 2004. Both strongSwan and the second fork
Openswan initially shared the same code basis including the author's X.
509 patch that added certificate and smartcard support to FreeS/WAN's
basic IKEv1 capability. But whereas Openswan rather followed the VPN
mainstream by supporting IKE Aggressive Mode, strongSwan focussed on
strong certificate and smartcard based authentication mechanisms.

Reprint of LinuxTag2008 Paper 3

Illustration 3: The Frees/WAN genealogy

Super FreeS/WANSuper FreeS/WAN

2003
Super FreeS/WANSuper FreeS/WAN

2003 X.509 2.x PatchX.509 2.x Patch

FreeS/WAN 2.xFreeS/WAN 2.x

X.509 2.x PatchX.509 2.x Patch

FreeS/WAN 2.xFreeS/WAN 2.x

1999 FreeS/WAN 1.xFreeS/WAN 1.x1999 FreeS/WAN 1.xFreeS/WAN 1.x

X.509 1.x PatchX.509 1.x Patch2000 X.509 1.x PatchX.509 1.x Patch2000

Openswan 1.xOpenswan 1.xOpenswan 1.xOpenswan 1.x

 2004 2004

2004

strongSwan 2.xstrongSwan 2.xOpenswan 2.xOpenswan 2.x
2004

strongSwan 2.xstrongSwan 2.xOpenswan 2.xOpenswan 2.x

2005

ITA IKEv2 ProjectITA IKEv2 Project
2006

2005

ITA IKEv2 ProjectITA IKEv2 Project
2006

strongSwan 4.xstrongSwan 4.x

2007 IKEv1 & IKEv2

strongSwan 4.xstrongSwan 4.x

2007 IKEv1 & IKEv2

Openswan 3.xOpenswan 3.x

IKEv1 only

Openswan 3.xOpenswan 3.x

IKEv1 only

http://www.freeswan.org/

● The second milestone occurred in May 2006 when the strongSwan 4.x
branch incorporating a first partial implementation of the IKEv2 protocol
was presented at LinuxTag2006 in Wiesbaden. Whereas the IKEv1 pluto
daemon inherited from the strongSwan 2.x branch was still heavily based
on the original FreeS/WAN code, the IKEv2 charon daemon had been
developed from scratch by applying modern object-oriented software
design principles. In order to achieve full configuration compatibility
between IKEv1 and IKEv2 connections, the architectural approach of
Illustration 4 was chosen:

The independent pluto and charon daemons are both controlled by the
ipsec starter which parses the ipsec.conf configuration file and then
transmits the connection information to the daemons via the whack and
stroke socket interfaces, respectively. The whack and stroke record-
based protocols are quite similar and are also spoken by the ipsec whack
and ipsec stroke command line tools which are mainly used to send
control and status commands directly to the keying daemons. Typical
commands are up <conn>, down <conn>, statusall, listall, etc.

The keying daemons communicate with the native IPsec stack of the
Linux 2.6 kernel via a Netlink socket which speaks the XFRM protocol.
IPsec SAs can be inserted and deleted and status information on the
active tunnels can be retrieved from the kernel which does the actual
ESP encryption and decryption work. Thus strongSwan is a pure userland
application that interoperates with a standard IPsec-enabled Linux kernel.

Reprint of LinuxTag2008 Paper 4

Illustration 4: The strongSwan IKE daemons

raw
socket
raw

socket

IKEv1 IKEv2

ipsec
starter
ipsec

starter
ipsec
whack
ipsec
whack

ipsec
stroke
ipsec
stroke

charoncharonplutopluto

LSFLSF

UDP/500
socket

UDP/500
socket

native
IPsec

native
IPsec

Netlink
XFRM
socket

Linux 2.6
kernel

ipsec.confipsec.conf

stroke socketwhack socket

raw
socket
raw

socket

IKEv1 IKEv2

ipsec
starter
ipsec

starter
ipsec
whack
ipsec
whack

ipsec
stroke
ipsec
stroke

charoncharonplutopluto

LSFLSF

UDP/500
socket

UDP/500
socket

native
IPsec

native
IPsec

Netlink
XFRM
socket

Linux 2.6
kernel

ipsec.confipsec.conf

stroke socketwhack socket

Software Architecture of the IKEv2 Daemon

In the following we are going to concentrate on the IKEv2 charon daemon only,
since no active development is taking place for the “old” IKEv1 pluto daemon
any more. Fresh IKEv1 functionality might be integrated into charon at a future
development stage. Illustration 5 shows a block diagram of charon's software
architecture. Written completely in the C programming language, the IKEv2
daemon is fully multi-threaded. A total of 16 worker threads concurrently
handle a broad set of different tasks. E.g. an IKE packet arriving at the UDP
socket interface is assigned to an idle receiver thread which pre-parses the
message and then queues a job with the scheduler for further processing.
Reply packets are then sent by the sender thread to the socket interface.

In addition to the UDP socket the following blocks are interfacing with the
outside world:

● backends retrieve connection definitions

● credentials manage Pre-Shared Keys (PSKs), RSA private keys and
fetch X.509 certificates and certificate revocation lists (CRLs).

● bus is responsible for the signalling of events among the threads and for
logging to the syslog, the file system or a database.

● kernel interface communicates with the IPsec stack in the Linux 2.6
kernel via the Netlink socket interface using the XFRM protocol.

At the core of the charon daemon is the IKE SA Manager which is responsible
for the peer authentication based on the presented credentials and sets up
IKE_SAs and dependent CHILD_SAs according to the connection definitions.

Reprint of LinuxTag2008 Paper 5

Illustration 5: Software architecture of the IKEv2 charon daemon

socketsocket

charon

busbus

backendsbackendscredentialscredentials

receiverreceiver

sendersender

kernel interfacekernel interface

schedulerscheduler

processorprocessor

file loggerfile logger sys loggersys logger

IKE SA
M
a
n
a
g
e
r

IKE SA
M
a
n
a
g
e
r

IKE
SA

IKE
SA

IKE
SA

IKE
SA

CHILD SACHILD SA

CHILD SACHILD SA

CHILD SACHILD SA

IPsec stackIPsec stack

socketsocket

charon

busbus

backendsbackendscredentialscredentials

receiverreceiver

sendersender

kernel interfacekernel interface

schedulerscheduler

processorprocessor

file loggerfile logger sys loggersys logger

IKE SA
M
a
n
a
g
e
r

IKE SA
M
a
n
a
g
e
r

IKE
SA

IKE
SA

IKE
SA

IKE
SA

CHILD SACHILD SA

CHILD SACHILD SA

CHILD SACHILD SA

IPsec stackIPsec stack

Configuration and Control – the FreeS/WAN Way

Illustration 6 shows a typical strongSwan connection definition using the
classical configuration files ipsec.conf for connection and peer information and
ipsec.secrets for credentials. Both file formats go a long way back to the
original FreeS/WAN project and have been kept by the strongSwan project with
only some extensions added. What is totally new, is the way the configuration
files are used to set up an IKEv2 connection with a mixed PSK / RSA
authentication plus the automatic assignment of virtual IP addresses for the
road warrior clients from a common address pool. This goal is achieved with
the following configuration parameters:

● keyexchange=ikev2 This parameter has always existed but had been
used in the past with its default value “ike” that stood for “ikev1”. With
the setting “ikev2” the connection is set up by the IKEv2 charon daemon
in place of the default IKEv1 pluto daemon.

● authby=psk, authby=rsasig This is an IKEv2 specialty where the road
warriors carol and dave (see Illustration 2 for the network topology) use a
Pre-Shared Key (PSK) each as user credentials, whereas the VPN gateway
moon authenticates itself with a digital RSA signature corroborated by an
X.509 host certificate.

● leftsourceip=%config, rightsourceip=10.3.0.0/16 With the
leftsourceip=%config setting the road warriors carol and dave request a
virtual IP address from the central gateway moon, to by used as a source
address within the IPsec tunnel. The gateway assigns such addresses in
increasing order on a first-come, first-served basis out of a pool defined
by the rightsourceip statement. If addresses are to be permanently
bound to a given identity, the notation rightsourceip=%<poolname> is
used which stores the lease information in a non-volatile database.

Reprint of LinuxTag2008 Paper 6

Illustration 6: IKEv2 Mixed PSK/RSA Authentication

#ipsec.conf for roadwarrior carol
conn home

keyexchange=ikev2
authby=psk
left=%defaultroute
leftsourceip=%config
leftid=carol@strongswan.org
leftfirewall=yes
right=192.168.0.1
rightid=@moon.strongswan.org
rightsubnet=10.1.0.0/16
auto=start

#ipsec.conf for gateway moon
conn rw

keyexchange=ikev2
authby=rsasig
left=%defaultroute
leftsubnet=10.1.0.0/16
leftcert=moonCert.pem
leftid=@moon.strongswan.org
leftfirewall=yes
right=%any
rightsourceip=10.3.0.0/16
auto=add

#ipsec.secrets for roadwarrior carol
carol@strongswan.org : \

PSK "FpZAZqEN6Ti9sqt4ZP5EWcqx"

#ipsec.secrets for gateway moon
: RSA moonKey.pem
carol@strongswan.org : \

PSK "FpZAZqEN6Ti9sqt4ZP5EWcqx"

dave@strongswan.org : \
PSK "jVzONCF02ncsgiSlmIXeqhGN"

#ipsec.conf for roadwarrior carol
conn home

keyexchange=ikev2
authby=psk
left=%defaultroute
leftsourceip=%config
leftid=carol@strongswan.org
leftfirewall=yes
right=192.168.0.1
rightid=@moon.strongswan.org
rightsubnet=10.1.0.0/16
auto=start

#ipsec.conf for gateway moon
conn rw

keyexchange=ikev2
authby=rsasig
left=%defaultroute
leftsubnet=10.1.0.0/16
leftcert=moonCert.pem
leftid=@moon.strongswan.org
leftfirewall=yes
right=%any
rightsourceip=10.3.0.0/16
auto=add

#ipsec.secrets for roadwarrior carol
carol@strongswan.org : \

PSK "FpZAZqEN6Ti9sqt4ZP5EWcqx"

#ipsec.secrets for gateway moon
: RSA moonKey.pem
carol@strongswan.org : \

PSK "FpZAZqEN6Ti9sqt4ZP5EWcqx"

dave@strongswan.org : \
PSK "jVzONCF02ncsgiSlmIXeqhGN"

Going back to the block diagram in Illustration 5, we see that the stroke back
end is used to implement the connection information retrieval and the fetching
of credentials based on the ipsec.conf and ipsec.secrets files in a classical
FreeS/WAN way. In addition to that the stroke protocol is employed for control
and logging functions as shown in the example of Illustration 7. The ipsec start
command not only starts the ipsec starter which in turn forks the pluto and
charon daemons but due to the auto=start directive in carol's ipsec.conf file
automatically initiates the connection setup to gateway moon via a stroke up
command. The resulting log entries show that the IKEv2 protocol requires only
four messages to set up an IKE_SA including the first CHILD_SA which is far
more efficient than the nine messages required by the old IKEv1 protocol.

The second example depicted in Illustration 8 shows the use of the ipsec status
command which is actually translated into and executed as ipsec stroke status
and shows some important charon system parameters, the connection
definitions and the actual status of the IKE and IPsec security associations.

Reprint of LinuxTag2008 Paper 7

Illustration 7: Using the stroke interface to start a connection

carol> ipsec start
05[AUD] initiating IKE_SA 'home' to 192.168.0.1
05[ENC] generating IKE_SA_INIT request 0 [SA KE No N N]
05[NET] sending packet: from 192.168.0.100[500] to 192.168.0.1[500]
06[NET] received packet: from 192.168.0.1[500] to 192.168.0.100[500]
06[ENC] parsed IKE_SA_INIT response 0 [SA KE No N N]
06[ENC] generating IKE_AUTH request 1 [IDi CERTREQ IDr AUTH CP SA TSi TSr]
06[NET] sending packet: from 192.168.0.100[500] to 192.168.0.1[500]
07[NET] received packet: from 192.168.0.1[500] to 192.168.0.100[500]
07[ENC] parsed IKE_AUTH response 1 [IDr CERT AUTH CP SA TSi TSr N]
07[ENC] IKE_SA 'home' established between 192.168.0.100...192.168.0.1
07[IKE] installing new virtual IP 10.3.0.1
07[AUD] CHILD_SA 'home' established successfully

Illustration 8: Using the stroke interface to get status information

carol> ipsec status
Performance:

uptime: 5 seconds, since Apr 28 18:30:36 2008
worker threads: 11 idle of 16, job queue load: 1, scheduled events: 5

Listening IP addresses:
192.168.0.100
fec0::10

Connections:
home: 192.168.0.100[carol@strongswan.org]...192.168.0.1[moon.strongswan.org]
home: dynamic/32 === 10.1.0.0/16

Security Associations:
home[1]: ESTABLISHED, 192.168.0.100[carol@strongswan.org]...

192.168.0.1[moon.strongswan.org]
home[1]: IKE SPIs: 15993ec81138c1b1_i* ce054ec02da36c8e_r, reauth in 51 minutes
home{1}: INSTALLED, TUNNEL, ESP SPIs: c51cf634_i cf2c3efd_o
home{1}: AES_CBC-128/HMAC_SHA1_96, rekeying in 14 minutes, last use: 2s_i 2s_o
home{1}: 10.3.0.1/32 === 10.1.0.0/16

Configuration and Control – the Modular Way

The strongSwan 4.2 branch released in April 2008 introduced some
fundamental changes in the software architecture of the IKEv2 charon daemon.
The logical building blocks controller, credentials, backends, bus, and eap have
been completely modularized as is shown in the block diagram of Illustration 9.
Charon's external interfaces can now be adapted and expanded at run-time by
dynamically loading customized plugins.

Currently the following standard plugins are available:

● stroke is the only plugin loaded by default and implements the classical
FreeS/WAN look and feel interface described in the previous section. The
stroke plugin can be completely removed if not needed.

● smp implements the XML-based strongSwan Management Protocol
(SMP) which uses a UNIX socket as a bi-directional communications
channel. strongSwan Manager, our web-based demo application will be
presented in the next section.

● sql implements an SQL database back end for storing configuration data
and credentials. The corresponding entity-relationship diagrams will be
presented later in the text.

● med_db implements the database interface of the strongSwan
Mediation Manager presented later in this text.

● eap_x plugins implement any number of Extended Authentication
Protocols (EAP). Available are EAP-AKA, EAP-SIM, and EAP-MD5.

Reprint of LinuxTag2008 Paper 8

Illustration 9: Modular structure of the charon daemon based on plugins

credentialscredentials

charon

P
l
u
g
i
n

L
o
a
d
e
r

busbus

backendsbackends

eapeap

…

strokestroke

smpsmp

med_dbmed_db

eap_akaeap_aka

eap_simeap_sim

eap_md5eap_md5

controllercontroller

…

sqlsql

credentialscredentials

charon

P
l
u
g
i
n

L
o
a
d
e
r

busbus

backendsbackends

eapeapeapeap

…

strokestrokestrokestroke

smpsmpsmpsmp

med_dbmed_dbmed_dbmed_db

eap_akaeap_akaeap_akaeap_aka

eap_simeap_simeap_simeap_sim

eap_md5eap_md5eap_md5eap_md5

controllercontroller

…

sqlsqlsqlsql

strongSwan Manager

The strongSwan Manager prototype web application depicted in Illustration 10
uses the XML-based strongSwan Management Protocol (SMP) to get current
connection status information from the charon daemon. SMP uses Relax-NG
schemata (www.relaxng.org) for validation, since they are more more powerful
than DTD but simpler than full-blown XML schemata. The graphical web
interface is completely coded in the C programming language but built with the
help of the ClearSilver HTML template system (www.clearsilver.net) which
tremendously facilitates the page design. The strongSwan Manager can be
called e.g. by an Apache or lighttpd web server via its standard FastCGI
interface (www.fastcgi.com).

The strongSwan Manager can also be used to start and stop individual IKE
security associations and/or dependent CHILD SAs via the SMP interface, thus
replacing the ipsec up and ipsec down stroke commands. In Illustration 10 a
click on the top-most red cross symbol takes down the IKE SA #82 together
with the two CHILD SAs #163 and #164, whereas a click on the lowest cross
terminates the CHILD SA hsr-dns only.

Another feature of the strongSwan Manager is the enumeration of all available
connection definitions by means of the Config menu. Individual connections can
then be started from this menu by the press of a button. Configuration
information is currently retrieved from the charon daemon via the SMP
interface. Future version of the strongSwan Manager will allow to edit
connections via an SQL database interface.

Reprint of LinuxTag2008 Paper 9

Illustration 10: strongSwan manager displaying active IKE SAs

http://www.fastcgi.com/
http://www.clearsilver.net/
http://www.relaxng.org/

SQL Database Interface

The modular structure of the charon daemon presented in Illustration 9 listed
the possibility of retrieving connection information and credentials via a
database back end implemented by means of the sql plugin. The actual
physical database access and the SQL queries are realized by registering a
product-specific driver with the libstrongswan library as shown in the plugin
overview of Illustration 12. Currently only SQLite (www.sqlite.org) and MySQL
(www.mysql.com) are supported but in principle any other relational database
could be connected by writing an appropriate driver plugin.

The entity-relationship diagram used by both the SQLite and MySQL plugins is
shown in Illustration 11. The diagram defines entities for storing

● credentials comprising tables for shared_secrets, private_keys, and
certificates bound to one or several identities

● identities of various types (ID_FQDN, ID_RFC822_ADDR, ID_IPV4_ADDR,
ID_IPV6_ADDR, ID_DER_ASN1_DN, ID_KEY_ID)

● connections definitions consisting of peer_configs, ike_configs,
child_configs, and traffic_selectors

● pools of virtual IPv4 or IPv6 addresses that can be leased persistently to
specific identities.

Currently no strongSwan-specific tool exists for entering and editing the
information contained in the database although there are plans to build such
administration capabilities into future releases of the strongSwan Manager web
application.

Reprint of LinuxTag2008 Paper 10

Illustration 11: strongSwan entity relationship diagram

identities

private_keys

certificates

leases

peer_configs

ike_configs

child_configs

traffic_selectorslogs

identitiesshared_secrets

pools

identities

private_keys

certificates

leases

peer_configs

ike_configs

child_configs

traffic_selectorslogs

identitiesshared_secrets

pools

http://www.mysql.com/
http://www.sqlite.org/

Plugins for the “libstrongswan” Library

The libstrongswan library has been modularized into factories and various
plugins that register with them. The following modules are currently available:

● aes implements AES with 128/192/256 bit keys in SW (non-US code)
● des implements single and triple-DES in SW (non-US code)
● md5 implements the MD5 hash function in SW
● sha1 implements the SHA-1 hash function in SW
● sha2 implements the SHA-256/384/512 hash function in SW
● padlock accelerates AES and SHA-1 in HW (uses VIA PadLock processor)
● hmac implements the HMAC authentication function in SW
● xcbc implements the AES XCBC MAC function in SW
● fips_prf implements the FIPS PRF function in SW
● random generates random numbers (uses /dev/random)
● gmp implements RSA and DH public key cryptography (uses libgmp)
● openssl implements cryptographic functions using OpenSSL
● x509 implements support ofX.509 certificates, CRLs, and OCSP
● mysql wraps the access to MySQL databases (uses libmysqlclient_r)
● sqlite wraps the access to SQLite databases (uses libsqlite3)
● curl fetches data from HTTP and other URLs (uses libcurl)
● ldap fetches of data from LDAP servers (uses OpenLDAP)

Reprint of LinuxTag2008 Paper 11

Illustration 12: Modular structure of libstrongswan based on plugins

credentialscredentials

libstrongswan

P
l
u
g
i
n

L
o
a
d
e
r

cryptocrypto

databasedatabase

fetcherfetcher

…

…

…

aesaes

sha2sha2

randomrandom

x509x509

sqlitesqlite

mysqlmysql

curlcurl

ldapldap

Factories

credentialscredentials

libstrongswan

P
l
u
g
i
n

L
o
a
d
e
r

cryptocrypto

databasedatabase

fetcherfetcher

…

…

…

aesaesaesaes

sha2sha2sha2sha2

randomrandomrandomrandom

x509x509x509x509

sqlitesqlitesqlitesqlite

mysqlmysqlmysqlmysql

curlcurlcurlcurl

ldapldapldapldap

Factories

Cryptographic Plugins

As shown in Illustration 12 all cryptographic functions that were hard-coded in
earlier versions of the libstrongswan library have been modularized and can
now be individually replaced by other implementations. Currently there are two
projects under way that intend to offer alternative cryptographic plugins:

● Use of the OpenSSL FIPS 140-2 library (http://www.openssl.org/docs/fips/)

Especially in the United States there is a big interest in a FIPS 140-2
certified strongSwan variant. The easiest way to achieve this goal is to
use the FIPS 140-2 certified openssl-fips-1.1.2 library for all IKEv2
cryptographic operations.

● Use of cryptographic hardware accelerators

On VPN gateways with thousands of concurrent connections there might
occur the need to accelerate the most time-consuming cryptographic
operations of the IKEv2 protocol that take place in the userland (in
contrast to the cryptographic operations on ESP packets that are handled
by the Crypto API in the Linux 2.6 kernel). As a proof of concept the
strongSwan 4.2 distribution comes with a padlock plugin which delegates
AES encryption of IKE packets and SHA-1 and SHA-256 hashes to the
PadLock Security Engine which is available on the VIA EPIA Mini- and
Nano-ITX boards (see Illustration 13). Actually the speedup due to AES
and SHA acceleration is rather negligible. Much greater savings could be
expected by using the hardware Montgomery Multiplier for RSA and
Diffie-Hellman public key operations.

Reprint of LinuxTag2008 Paper 12

Illustration 13: VIA EPIA-NX Nano-ITX board with PadLock Security Engine

http://www.openssl.org/docs/fips/
http://www.openssl.org/docs/fips/

The IKEv2 Mediation Service

In December 2006 the two HSR graduates Tobias Brunner and Daniel
Röthlisberger developed a peer-to-peer NAT traversal scheme for IPsec as part
of their diploma thesis. Tobias Brunner then took on the work to write an
Internet draft <draft-brunner-ikev2-mediation-00.txt> that was published by
the IETF on April 16 2008 (see Illustration 15).

The problem of setting up a UDP connection between two peers hidden behind
two NAT routers is well known from the field of IP telephony where STUN and
ICE are used to discover and exchange endpoints and concerted hole punching
is employed to surmount stateful inspection firewalls. In a VoIP environment
UDP endpoint discovery is usually achieved by means of a STUN server located
in the Internet that is reachable by both peers. In our scheme this mediation
server will be using the IKEv2 protocol instead, as shown in Illustration 14.

The two hosts alice and bob with IP addresses 10.1.0.10 and 10.2.0.10 are
sitting behind two NAT routers with external IP addresses 1.2.3.4 and 5.6.7.8,
respectively. The peers want to set up a direct IPsec tunnel using the
established NAT traversal mechanism of encapsulating ESP packets in UDP
datagrams. Unfortunately they cannot achieve this by themselves because
neither host is seen from the Internet under the IKE NAT-T port 4500.

Therefore both peers set up a mediation connection with a mediation server,
first. For the mediation connections randomized pseudonyms can be used as
IKE peer identities in order to prevent unwanted connection attempts by
foreign peers. In our example alice sets up an IKE SA with the mediation server
using her pseudonym aZch2@m.org. As part of our proposed IKEv2 protocol
extension no Child SA is created but aZch2@m.org can register a request with
the mediation server to be alerted when peer 7vnU3b@m.org comes on-line.

Reprint of LinuxTag2008 Paper 13

Illustration 14: Peer-to-peer NAT-traversal for IPsec

Mediated Connection

IKEv2

NAT Router
5.6.7.8:3001

Direct ESP Tunnel
using NAT-Traversal

10.1.0.10 10.2.0.10

10.1.0.10:4500 10.2.0.10:4500

NAT Router
1.2.3.4:1025

IKEv2

Mediation
Connection

IKEv2

Mediation
Connection

Peer Alice Peer Bob

aZ9ch2@m.org

7vnU3b@m.org

Mediation Server

Mediation
Client

Mediation
Client

Mediated Connection

IKEv2

Mediated Connection

IKEv2

NAT Router
5.6.7.8:3001

Direct ESP Tunnel
using NAT-Traversal

10.1.0.10 10.2.0.10Direct ESP Tunnel
using NAT-Traversal

10.1.0.10 10.2.0.10

10.1.0.10:4500 10.2.0.10:4500

NAT Router
1.2.3.4:1025

IKEv2

Mediation
Connection

IKEv2

Mediation
Connection

IKEv2

Mediation
Connection

IKEv2

Mediation
Connection

Peer Alice Peer Bob

aZ9ch2@m.org

7vnU3b@m.org

Mediation Server

Mediation
Client

Mediation
Client

Mediation Server

Mediation
Client

Mediation
Client

With the help of a new IKEv2 endpoint payload the mediation server tells alice
under which UDP endpoint she is seen from the Internet (1.2.3.4:1025). When
bob sets up his mediation connection in turn, he learns his current endpoint
(5.6.7.8:3001) as well.

The mediation server now informs aZch2@m.org of 7vnU3b@m.org's presence
and mediates the mutual exchange of endpoints. alice and bob then try to set
up a direct IKEv2 connection using their true identities by applying the various
hole punching methods described by ICE. The peers might even discover that
they are located behind the same NAT router so that no NAT traversal is
necessary at all.

Tobias Brunner integrated his IKEv2 Mediation Extension into the current
strongSwan 4.2 distribution so that it is publicly available for everyone to
experiment with. A sample scenario can be found under the link

http://www.strongswan.org/uml/testresults42/p2pnat/medsrv-psk/

Feedback from visitors at the strongSwan booth at last year's LinuxTag has
shown though, that manual configuration of the mediation and mediated
connections via ipsec.conf and ipsec.secrets are too complex for the average
user. Therefore we decided to develop a user-friendly graphical tool, the
strongSwan Mediation Manager which we are going to present in the next
section. The actual implementation is currently being done by the HSR
students Philip Bötschi and Adrian Dörig as part of their bachelor thesis.

Reprint of LinuxTag2008 Paper 14

Illustration 15: draft-brunner-ikev2-mediation released on April 16 2008

http://www.strongswan.org/uml/testresults42/p2pnat/medsrv-psk/

The strongSwan Mediation Manager

The strongSwan Mediation Manager uses the same FastCGI web technology as
the strongSwan Manager shown in Illustration 10. Actually there are two
slightly different web applications:

● The strongSwan Mediation Server Manager which allows a user to
register her client[s] that are hidden behind a NAT router with the
strongSwan Mediation server.

● The strongSwan Mediation Client Manager which allows a user to
configure both the mediated peer-to-peer connection as well as the
mediation connection to the mediation server on a strongSwan client.

The prerequisites for both the server and client applications are a HTTP server
(e.g. lighttpd) and a database (SQLite or MySQL) running on the target system.

Illustration 16 shows the registration screen of the strongSwan Mediation
Server Manager. Users that want to register one or more clients with the
mediation server must open a personal user account first. Currently the user
identity is not verified so that anyone can use the mediation service.

After a successful login the Add Peer screen depicted in Illustration 17 allows a
client to be registered with the mediation server. In order to keep the
complexity for the average user low, peer authentication is based on raw 2048
bit RSA key pairs that are automatically generated by the Mediation Client
Manager and can be transferred via simple copy-and-paste into the Mediation
Server Manager's Add Peer menu. The RSA public key format is identical to that
used by OpenSSL (www.openssl.org). The peer identity is an ID_KEY_ID derived
from the peer's public key which guarantees a high degree of anonymity and
eliminates the risk of peer identity collisions.

Reprint of LinuxTag2008 Paper 15

Illustration 16: Login at the strongSwan mediation manager

http://www.openssl.org/

Two examples of peer identities are shown in the Peers menu of Illustration 18.

Reprint of LinuxTag2008 Paper 16

Illustration 18: List of registered peers

Illustration 17: Register a peer with the mediation manager

Conclusion

The modularity and scalability offered by the new strongSwan 4.2 branch is
hopefully going to form the basis for many industry-grade VPN applications.
The flexible concept of library plugins opens up a broad choice of cryptographic
hardware and software options. SQL-based database interfaces and first
attempts at a graphical management interface are going to facilitate the
administration of VPN networks. And finally strongSwan's unique approach to
solve the NAT traversal problems by means of the IKEv2 Mediation Service is
expected to find manifold applications in remote control and diagnosis
systems.

Bibliography

● IETF RFC 2409 „Internet Key Exchange (IKE)”, 1998

● IETF RFC 4306 „Internet Key Exchange (IKEv2) Protocol“, 2005

● IETF Draft <draft-brunner-ikev2-mediation-00.txt> „IKEv2 Mediation
Extension“, 2008

Reprint of LinuxTag2008 Paper 17

	What is strongSwan?
	strongSwan Software Architecture
	Software Architecture of the IKEv2 Daemon
	Configuration and Control – the FreeS/WAN Way
	Configuration and Control – the Modular Way
	strongSwan Manager
	SQL Database Interface
	Plugins for the “libstrongswan” Library
	Cryptographic Plugins
	The IKEv2 Mediation Service
	The strongSwan Mediation Manager
	Conclusion
	Bibliography

