
Advanced Features of Linux strongSwan
the OpenSource VPN Solution

Institute of Internet Technologies and Applications
Hochschule für Technik Rapperswil, Schweiz

The powerful advanced features of the Linux strongSwan VPN solution will be
presented: IPsec policies based on wildcards, certificate hierarchies or group
memberships defined by X.509 attribute certificates; certificate revocation based
on the Online Certificate Status Protocol; Virtual IP address assignment;
smartcard support; Dead Peer Detection. Also the new and user-friendly
strongSwan User-Mode-Linux testing environment will be demonstrated.

1 IPsec-based Virtual Private Networks

Figure 1 shows a typical VPN scenario where two subnets 10.1.0.0/16 and 10.2.0.0/16
possessing private network addresses are connected with each other over the Internet
by means of a site-to-site VPN tunnel. The tunnel is established between the VPN
gateways 11.22.33.44 and 55.66.77.88 which automatically encrypt and authenticate
each packet that is being exchanged between the two networks.

Figure 1: Typical VPN scenario

The second much more challenging scenario depicted in Figure 1 is remote access. So
called „road warriors“, equipped with dynamical IP addresses assigned by their local
Internet Service Providers (ISPs) are able to build up a VPN tunnel to the security
gateway 11.22.33.44 from any point of the Internet using either fixed connections,
public WLAN hot spots or mobile communication channels. Thus the remote access
clients get full access to all resources in the 10.1.0.0/16 network as if they were
located right at Head Quarters.

Reprint of LinuxTag2005 Paper 1

Head
Quarters SubsidiaryVPN Tunnel

VPN Gateway
11.22.33.44

VPN Gateway
55.66.77.88

10.1.0.0/16 10.2.0.0/16

10.1.0.5 10.2.0.3

Internet

„Road Warrior“

VPN Tunnel

VPN Client 10.3.0.2

55.66.x.x

We will come back to the special properties of the road warrior case later in this paper
and continue by first giving a short overview on the IPsec standard which basically
consists of two parts:

● The actual encryption and authentication of tunneled IP packets takes place in the
kernel using the Encapsulating Security Payload (ESP) standard defined by RFC
2406. ESP is IP protocol 50 and doesn't have ports.

● The initial negotiation and the ensuing periodic re-keying of IPsec tunnels is done by
a userland daemon running the Internet Key Exchange (IKE) protocol defined by
RFCs 2407, 2408, and 2409. IKE is transported over UDP datagrams and must use
the well-known source and destination port 500.

1.1 The IPsec Kernel Part - ESP

The ESP encapsulation of IP packets is shown in figure 2. Referring to the site-to-site
VPN scenario depicted in figure 1, a TCP packet exchanged between a host 10.1.0.5 in
the 10.1.0.0/16 network and a host 10.2.0.7 in the 10.2.0.0/16 network will carry
these two addresses as source and destination in the original IP header, whereas the
outer IP header of the IPsec packet will contain the addresses 11.22.33.44 and
55.66.77.88 of the VPN gateways that do the actual tunneling. ESP encrypts the whole
original IP packet including the internal header and secures the encrypted content
against unauthorized modification by computing and appending a cryptographic
checksum.

Figure 2: IPsec Encapsulating Security Payload (ESP)

Depending on the Linux kernel version, strongSwan employs different mechanisms to
implement the IPsec kernel part:

● Under a Linux 2.4 kernel, KLIPS from the FreeS/WAN project is used to
implement the IPsec kernel functionality. KLIPS, distributed as part of
strongSwan, can either be compiled statically into the kernel or loaded
dynamically as a kernel module ipsec.o. For encryption, authentication and
compression, built-in functions from the FreeS/WAN project and/or crypto
modules provided by JuanJo Ciarlante are used.

● Under a Linux 2.6 kernel, the native KAME stack ported from the BSD
project to Linux is used. Encryption, authentication and compression tasks
use the standard modules offered by the kernel's crypto API.

Reprint of LinuxTag2005 Paper 2

Original
IP Header

TCP
Header DataIPv4

Before applying ESP

Outer
IP Header

ESP
Header IPv4

After applying ESP

encrypted
authenticated

Original
IP Header

TCP
Header Data ESP

Trailer
ESP
Auth

Encapsulating Security
Payload (ESP): RFC 2406

1.2 The IPsec Userland Part - IKE

strongSwan's userland daemon pluto is responsible for setting up, re-keying and
deleting IPsec tunnels using the standardized Internet Key Exchange (IKE) protocol. An
IKE negotiation is divided into Phase 1 where the VPN peers do mutual authentication,
followed by one or several Phase 2 exchanges where the encryption, authentication
and compression parameters for the actual tunneling of IP packets between
predefined subnets are set up.

strongSwan implements IKE Main Mode for Phase 1 and IKE Quick Mode for Phase 2.
The potentially vulnerable IKE Aggressive Mode Phase 1 variant is not supported by
strongSwan out of security considerations. IKE Main Mode peer authentication can
either be based on Pre-Shared Keys (PSK) or on RSA signatures as shown in figure 3.

Figure 3: Internet Key Exchange Protocol (IKE)

IKE Main Mode consists of six messages exchanged between the VPN peers:

1. The initiator proposes a series of supported encryption and authentication
transforms for securing the IKE negotiation.

2. The responder selects a set of transforms common to both parties.

3. The initiator sends a public Diffie-Hellman factor and a nonce.

4. The responder in turn also sends a public Diffie-Hellman factor and a nonce
which is a random number. Using the Diffie-Hellman key exchange algorithm
both end points can now compute a common shared secret that is used to
encrypt all ensuing IKE messages.

5. The initiator sends its identity and a signature computed by encrypting a
hash formed over all exchanged IKE messages with its RSA private key.
Although an option in IKE, strongSwan always includes a trusted X.509
certificate that can be used by the peer to verify the signature.

6. Now it is the responder's turn to identify and authenticate itself.

Each IKE Quick Mode will then add another three messages.

Reprint of LinuxTag2005 Paper 3

ResponderInitiator

IKE
Header

DH Key
Exchange Nr4

3IKE
Header

DH Key
Exchange Ni

IKE
Header

ISAKMP SA
Proposal 1

IKE
Header

ISAKMP SA
Response2

5IKE
Header

encrypted

IDi Certi S igi encrypted

IKE
Header6 IDr Certr S igr

2 From FreeS/WAN to strongSwan

The FreeS/WAN project (www.freeswan.org) was founded in 1999 by John Gilmore
with the ultimate goal of automatically encrypting a significant part of the Internet
traffic using Opportunistic Encryption (OE) based on IPsec and IKE. The grand idea
behind OE was to do host authentication using raw RSA public keys fetched via the
ubiquitous Domain Name System (DNS).

Because most existing VPN implementations did not and still do not support the use of
raw RSA keys, the author decided to contribute a X.509 patch to the FreeS/WAN
project in order to make it possible for Linux hosts to set up IPsec tunnels with any
other VPN product using standardized X.509 certificates. The first X.509 patch was
released in 2000 and all further versions delivered over the next four years were
developed by the author as professor for security and communications at the Zürcher
Hochschule Winterthur (ZHW) with major contributions from a whole group of diploma
students.

In 2002, due to the increasing demand for the X.509 patch, Ken Bantoft bundled it
with several other FreeS/WAN add-ons like Mathieu Lafon's NAT traversal patch and
JuanJo Ciarlante's alternative crypto algorithms and started his Super FreeS/WAN
distribution that quickly became extremely popular.

Figure 4: The FreeS/WAN Genealogy

Towards the end of 2003 when it became evident that the FreeS/WAN project was
going to be discontinued in spring 2004 with the final 2.06 release, Ken Bantoft,
FreeS/WAN project leader Michael Richardson and Paul Wouters founded Xelerance
Corporation with the goal of carrying on the IPsec development within their
Openswan project (www.openswan.org).

Whereas Openswan has been moving closer to the mainstream VPN path by adding
IKE Aggressive Mode and Cisco's legacy XAUTH authentication, the author decided to
fork a strongSwan distribution (www.strongswan.org) of his own in order to be able
to quickly integrate and deploy new certificate-based features originating from the
Zürcher Hochschule Winterthur.

Reprint of LinuxTag2005 Paper 4

FreeS/WAN 2.06

Openswan 2.3.1 2004

Openswan 1.0.9X.509 Patch 0.9.42 2003

Xelerance

X.509 Patch 0.9.32 Super FreeS/WAN 1.99.8
FreeS/WAN 1.99

2002

Ken Bantoft

FreeS/WAN 1.3 X.509 Patch 0.1 2000

ZHW

X.509 Patch 1.6.3 strongSwan 2.4.2 2004

 ITA-HSR

X.509 Patch 1.5.4

FreeS/WAN 2.04

Linux 2.6 Kernel

In March 2005 the author accepted an offer to join the Hochschule für Technik
Rapperswil (HSR, www.hsr.ch) where as a professor for security and communications
he is now heading the Institute for Internet Technologies and Applications (ITA). Being
an important part of the ITA strategy, the maintenance and continuing evolution of the
strongSwan distribution will be guaranteed in the years to come.

3 The „Road Warrior“ Remote Access Case

One of strongSwan's powerful features inherited from FreeS/WAN is the support of
road warrior connections as shown in figure 5.

Figure 5: Specific properties of the road warrior scenario

The following three properties make the remote acces case special:

● The IP address of a road warrior is nearly always dynamic, i.e. it is usually assigned
by a local ISP, so that a VPN gateway cannot get any information on the identity of
the remote-access client by looking at the source address.

● Since IKE Main Mode with Pre-Shared Keys (PSK) does not work with dynamic
addresses and the workaround based on IKE Agressive Mode is insecure, X.509
certificates should be used to establish the identity of a road warrior.

● In order to ensure that IP packets originating from the home network find the way
back through the IPsec tunnel and are not mistakenly routed directly into the
Internet via the default gateway, the inner IP address used in the tunnel should be
set to a virtual address taken from a special remote-access pool instead of being
equal to the road warrior's dynamic outer address.

The template in figure 6 defines a road warrior connection on a VPN gateway:

Figure 6: Road warrior connection definition on strongSwan gateway

Reprint of LinuxTag2005 Paper 5

Internet
Home

Network IPsec Tunnel

VPN Gateway
11.22.33.44

10.1.0.0/16
Road Warrior

55.66.x.x

Dynamic IP

Virtual IP
10.3.0.2

NAT

● conn road-warrior
right=%any
rightrsasigkey=%cert
rightsubnetwithin=10.3.0.0/16
left=%defaultroute
leftsubnet=10.1.0.0/16
leftcert=gwCert.pem
auto=add

left right

leftsubnet

gwCert
%cert

● right=%any takes into account that the IP address of the incoming road warrior is
dynamic and therefore a priori unknown.

● rightrsasigkey=%cert signifies that the peer's RSA public key will be made available
embedded in a X.509 certificate. This means that any road warrior presenting a
certificate issued by a Certification Authority (CA) the VPN gateway puts trust in,
will be allowed to set up an IPsec connection. Thus an unlimited number of road
warrior instances can be derived from this single template.

● rightsubnetwithin=10.3.0.0/16 defines an address range within which all virtual
peer addresses must lie.

● left=%defaultroute assigns the IP address of the default network interface to the
VPN gateway.

● leftsubnet=10.1.0.0/16 defines the internal network hidden behind the VPN
gateway.

● leftcert=gwCert.pem designates the path to the VPN gateway's own certificate.

● auto=add means the connection definition is loaded into memory when strongSwan
is started up. The keying daemon pluto then waits passively for incoming road
warrior connections.

In all our examples we will use the convention that left will designate the local side
and right the remote side of a VPN tunnel although strongSwan would also allow to
define the directions the other way round.

3.1 Virtual IP Address Assignment

On a strongSwan road warrior a virtual IP address can be assigned statically using the
leftsourceip statement:

conn home

 right=11.22.33.44 # IP of VPN gateway
 rightid=@gateway.kool.net # ID of VPN gateway
 rightsubnet=10.1.0.0/24 # subnet behind gateway
 left=%defaultroute # dynamic external IP
 leftsourceip=10.3.0.2 # static virtual IP
 leftcert=bodoCert.pem # Bodo's certificate
 leftid=bodo@kool.net # Bodo's ID
 auto=start # start tunnel automatically

In large VPNs with many users it would be preferable if the virtual addresses could be
retrieved from a centralized store and be pushed down to the road warriors via the
VPN gateway. This can be realized by means of the IKE Mode Config protocol. Thus
with dynamic assignment of the virtual IP address the configuration on the road
warrior changes to

conn home

 leftsourceip=%modeconfig # virtual IP assigned dynamically
 auto=start

Reprint of LinuxTag2005 Paper 6

On the VPN gateway which will act as a Mode Config server, the virtual IP addresses
must currently be defined for each road warrior in ipsec.conf using the rightsourceip
parameter. Thus the definition from figure 6 changes to

conn %default
 right=%any
 left=%defaultroute
 leftsubnet=10.1.0.0/16
 leftcert=gwCert.pem
 leftid=@gateway.kool.net
 auto=add

conn antje
 rightid=antje@kool.net
 rightsourceip=10.3.0.1

conn bodo
 rightid=bodo@kool.net
 rightsourceip=10.3.0.2

conn ...

Future versions of strongSwan will allow for the virtual IP addresses to reside on an
LDAP server which will further facilitate the management of large VPNs.

3.2 Dead Peer Detection

Dead Peer Detection (DPD, RFC 3706) is another userful feature implemented by
strongSwan. DPD avoids dangling IPsec security associations with peers that suddenly
vanish without properly terminating their tunnels via IKE Delete SA notifications.
Figure 7 shows the timing diagram of the DPD protocol.

Figure 7: Dead Peer Detection (DPD)

Reprint of LinuxTag2005 Paper 7

R-U-THERE #12

R-U-THERE-ACK #12

R-U-THERE #13

R-U-THERE #14

R-U-THERE #15

 tdelay

tdelay

tdelay

ttimeout

ESP
recent ESP
 traffic

tdelay

DELETE SADead peer
detected

Peer A Peer B

ESP
 IP protocol 50

IKE
UDP/500

tdelay

 tdelay

 no recent
 traffic

VPN Connection

When DPD is activated as in the following connection definition:

conn road-warrior
 right=%any
 ...
 dpddelay=1m # check connection every minute
 dpdtimeout=3m # timeout after 5 minutes
 dpdaction=clear # clear connection after timeout
 auto=add

then strongSwan checks every dpddelay interval if any ESP traffic has been received
from the peer. If this has not been the case then a R-U-THERE IKE notification
message is sent to the peer who replies with a R-U-THERE-ACK keep-alive message. If
no acknowledgement is received over a dpdtimeout interval then all IPsec tunnels
with the dead peer are automatically cleared.

3.3 Smartcard Support

Storing the RSA private key on a smartcard or USB crypto token as shown in figure 9
minimizes the risk in the case of theft or loss of a portable laptop computer.

Figure 8: Support of smartcards and USB crypto tokens

strongSwan offers a standardized PKCS #11 crypto token interface that can be used
either with the OpenSC smartcard library (www.opensc.org) or any other third party
PKCS #11 module.

A certificate stored on a smartcard e.g. under the object ID 52 can be referenced with
the command

conn home
 ...
 leftcert=%smartcard:52
 leftid=bodo@kool.net
 auto=add

Since the private RSA key stored on the crypto token is protected by a PIN, the
statement

 : PIN %smartcard:52 %prompt

in /etc/ipsec.secrets will cause pluto to prompt for the PIN code when the connection
home is started on the laptop computer.

Reprint of LinuxTag2005 Paper 8

In the upcoming 2.4.2 release, strongSwan is going to support card readers equipped
with a PIN pad as depicted in figure 10. Using the key pad and the display of the
secure smartcard reader as IO devices it will be possible to start and stop VPN
connections without the need for an additional keyboard.

Figure 9: PIN-pad-controlled strongSwan security gateway

4 Certificate Revocation Mechanisms

If user authentication in a VPN is based on X.509 certificates than it becomes of
utmost importance that certificates can be quickly revoked e.g when the
corresponding RSA private key gets compromised or if the user looses the right to
access the VPN. In this chapter we are going to present two supported revocation
methods , namely the dynamic download of Certificate Revocation Lists (CRLs) via
HTTP or LDAP Uniform Resource Identifiers (URIs) and the Online Certificate Status
Protocol (OCSP).

4.1 Certificate Revocation Lists

The most elegant way to define one or several CRL Distribution Points (CDPs) in the
form of HTTP or LDAP URIs, is to put them as X.509v3 certificate extensions right into
the host or user certificates. This can be achieved during certificate generation with
the following OpenSSL configuration:

crlDistributionPoints = # HTTP URI
 URI:http://crl.kool.net/cert.crl

crlDistributionPoints = # LDAP URI
 URI:ldap://ldap.kool.net/o=Kool AG,c=CH
 ?certificateRevocationList?base
 ?(objectClass=certificationAuthority)

Whenever a certificate is received from the peer via the IKE protocol, then strongSwan
will automatically start a thread to download the CRL. From then on a watchdog
thread will periodically check if an update is available and will fetch it shortly before
the old CRL expires.

If no built-in CDP extensions are present in the certificates or if additional CDPs
become available, the URIs can alternatively be defined for each certification authority
in a special ca section in ipsec.conf.

Reprint of LinuxTag2005 Paper 9

ca kool
 cacert=koolCA.pem
 crluri=http://crl.kool.net/cert.crl
 crluri2=http://crl2.kool.net/cert.crl
 ocspuri=http://ocsp.kool.net:8880
 auto=add

The ca section above defines two CRL URIs plus an URI pointing to an OCSP server, the
functionality of which we are going to discuss next.

4.2 Online Certificate Status Protocol

An OCSP server can be queried in near-real time about the current status of a given
certificate using the Online Certificate Status Protocol (OCSP, RFC 2560). OCSP
employs a HTTP-based request/response scheme as shown in figure 10.

An OCSP request must contain the issuer and the serial number of the certificate in
question and can be optionally signed by the requestor. The OCSP response takes on
one of the values: good, revoked, or unknown, and is signed by the OCSP server.

Figure 10: Online Certificate Status Protocol (OCSP)

Trust into the OCSP signer is established either by manually importing the
corresponding OCSP signing certificate into the /etc/ipsec.d/ocspcerts/ directory or by
looking for the extendedKeyUsage=OCSPSigner flag in the OCSP certificate issued by
the CA responsible for the revocation information. In the latter case the OCSP signing
certificate can be distributed by the server itself by including it in the OCSP response.

Reprint of LinuxTag2005 Paper 10

Antje Bodo

Kool CA

Kool CA

#0

OCSP Server

OC SP

Kool C A

Bodo

OCSP Request:
status of Kool CA #2 ?
optionally signed by Bodo

Bodo

Kool CA

#3

frequent status updates e.g. via CRL

Antje
Antje

Kool CA

#2

Authentication

OCSP Reply:
Kool CA #2 good

signed by OCSP Server

OCSP

Kool CA

#1is
OC SP

5 Advanced IPsec Policies

strongSwan's most powerful feature is the support of sophisticated IPsec policies
based on either wildcard parameters, certificate hierarchies or attribute certificates. In
this section we will present all three principles.

5.1 Based on Wildcard Parameters

With the road warrior connection definition of figure 6 any peer possessing a trusted
certificate can access the subnet protected by the security gateway. If we want to
restrict the access to specific user groups then we must define a corresponding IPsec
policy. This can be done by defining pattern matching rules operating on the identity
of the users. A solution recommended by RFC 3586 IPsec Policy Information Model is
to apply wildcards to the subject distinguished name of the user certificates. In the
example of figure 11 the research network 10.1.1.0/24 can be accessed by anyone
(CN=*) belonging to the R&D department (OU=R&D), whereas the sales network
10.1.2.0/24 is open to the sales staff (OU=Sales), only .

Figure 11: IPsec policy based on wildcards

5.2 Based on Certification Authorities

Another approach of dividing the peers into specific user groups is the creation of
intermediate certification authorities as shown in figure 12.

Figure 12: IPsec policy based on certification authorities

Reprint of LinuxTag2005 Paper 11

● conn research
 right=%any

rightid=″C=CH,O=Kool AG,OU=R&D,CN= *″
leftsubnet=10.1.1.0/24

● conn sales
right=%any
rightid="C=CH,O=Kool AG,OU=Sales,CN= *"

 leftsubnet=10.1.2.0/24

left

10.1.1.0/24

10.1.2.0/24

research

sales

● conn research
 right=%any

rightca=″C=CH,O=Kool AG,CN=R&D CA″
leftsubnet=10.1.1.0/24

● conn sales
 right=%any

rightca=″C=CH,O=Kool AG,CN=Sales CA″
leftsubnet=10.1.2.0/24

R&D CA Sales CA

Root CA

In this scenario both the research and sales departments issue user certificates of
their own. The intermediate certification authorities R&D CA and Sales CA,
respectively, are in turn certified by a common Root CA. Access to the departmental
networks are now restricted to the matching CA by using the rightca parameter.

5.3 Based on X.509 Attribute Certificates

The most flexible policy approach is based on group memberships certified by X.509
Attribute Certificates that are issued by an Authorization Authority. Figure 13 shows
the relationship between user and attribute certificates as well as between
certification and authorization authorities.

Figure 13: X.509 attribute certificates

A certification authority issues long-lived user certificates that ideally contain only
information fields that will rarely change. All short-lived personal attributes thay may
include group memberships, roles, target systems, time profiles, billing information,
etc. are put into special attribute certificates that are issued by a trusted authorization
authority. Each attribute certificate is linked to its holder by including the issuer and
serial number of the user certificate in the attribute certificate. Attribute certificates
can be issued e.g. on a daily basis, so that the user access profiles will always be up-
to-date and because of the short validity interval there will be no need for a revocation
mechanism.

strongSwan supports the implementaton of IPsec policies based on group
memberships as shown in the example of figure 14. The rightgroups parameter is
used to enumerate the groups that are allowed to access the network resources. Thus
in our example, members of the group Research can connect to the research network,
only, whereas the members of either the Accounting or Sales group are given
exclusive access to the Sales network.

Reprint of LinuxTag2005 Paper 12

Attribute Certificates

Kool AA

#5F

Certification Authority

Kool CA

Kool CA

#0 Kool AA

Kool CA

#1

Authorization Authority

Groups: Sales
Roles: user, admin
Targets: VPN, DB

User Certificates

Antje

Kool CA

#2

Bodo

Kool CA

#3

Holder: #2, Kool CA

Figure 14: IPsec policy based on group memberships

The openac program is a part of the strongSwan distribution and can be used to
generate X.509 attribute certificates linked to given users. Currently only group
attributes are supported and the generated certificates must be copied into the
/etc/ipsec.d/aacerts/ directory from where they are loaded by pluto. In future
strongSwan releases it will become possible to automatically fetch the attribute
certificates from an LDAP server.

6 User-Mode-Linux Testing Environment

The UML testing environment for strongSwan was created by Eric Marchionni and
Patrik Rayo (both recent graduates from the Zürcher Hochschule Winterthur,
Switzerland). Details on the implementation can be found in their diploma thesis
(http://home.zhwin.ch/~sna/DA/Sna3_2004.pdf). Although a UML test suite originally
written by Michael Richardson already existed for the FreeS/WAN 2.04 distribution,
the students decided to start from scratch in order to make the environment more
user-friendly.

Figure 15: strongSwan UML network topology

Reprint of LinuxTag2005 Paper 13

● conn research
 right=%any

rightgroups=Research
leftsubnet=10.1.1.0/24

● conn sales
 right=%any

rightgroups=“Accounting, Sales“
leftsubnet=10.1.2.0/24

Figure 15 shows the default UML network topology created for the strongSwan testing
environment. It consists of a maximum of eight virtual hosts: the gateways moon and
sun guarding the subnets 10.1.0.0/16 and 10.2.0.0/16, respectively; the clients alice,
carol, and bob populating these subnets; the road warriors carol and dave; and finally
winnetou used as a HTTP server. Three tun/tap devices connect the host system with
each of the UML instances via the UML switches sitting at the center of the
corresponding sub-networks.

If not all of the eight hosts are needed for a given simulation scenario then the desired
instances can be started by enumerating them on the command line:

start-testing alice moon carol winnetou

6.1 Interactive Mode

The most flexible way to use the strongSwan UML environment is the interactive mode
shown in figure 16. On a graphical desktop either a KDE konsole or an xterm is opened
for each started instance. It is also possible to open a terminal console on the host
system via remote access and switch between the various UML instances using the
screen command.

Figure 16: strongSwan UML network in interactive mode

The interactive mode is ideally suited for debugging new strongSwan releases
because all communication signals exchanged between the hosts as well as all log
files and debug information on the hosts are fully available in a controlled
environment. By including gcc, gdb and tcpdump in the UML root file system, code can
be modified, recompiled and tested on the fly right on the UML instances. In
November 2004, using the interactive mode it was possible to reproduce a reported
IKE re-keying problem occurring in the presence of NAT after two hours of UML
simulation and to release a bug fix on the same day!

Reprint of LinuxTag2005 Paper 14

6.2 Automated Software Regression Test Mode

Software regression tests are run prior to each new strongSwan release in order to
verify the compliance with the specifications and also to detect bugs in an early
stadium. Since the UML interactive mode is too error prone and too tedious because of
the manual configuration steps involved, the diploma students Eric Marchionni and
Patrik Rayo also created an automated testing framework for strongSwan.

A regression test suite consists of a large number of scenarios that are executed
automatically and the test results are analyzed without manual intervention. The
strongSwan testing framework creates a subdirectory for each scenario as the
example in figure 17 demonstrates.

Figure 17: Scripts for automated software regression testing

The file description.txt gives a concise summary of the scenario. The next file
pretest.dat contains a list of commands that are executed sequentially on the various
UML instances used by the given scenario. In our example a NAT rule is inserted on
the router moon. Next the ipsec daemon is started on the VPN end points alice and
sun. A sleep command of 5 seconds makes sure that both daemons will be up before
the last command is executed which builds up the NAT-ed IPsec connection using the
Internet Key Exchange protocol (IKE).

In a second phase the commands of the file evaltest.dat are executed which by
applying pattern matching rules evaluate if the desired test results have been
achieved. In our example it is first checked if the IKE negotiation has been successful
both on sun and alice. Next a ping from alice to bob executed on alice checks the
connectivity through the NAT-ed IPsec tunnel. The last check on router moon verifies if
the standardized UDP port 4500 has been used for the NAT traversal.

In the third and last phase the commands in posttest.dat reset all UML instances
involved in the scenario to the idle state at the outset of the test. This is achieved by
stopping ipsec on the VPN peers and by flushing the router’s NAT rule.

Reprint of LinuxTag2005 Paper 15

nat-one-rwnat-one-rw

evaltest.datevaltest.dat
sun::ipsec auto --status::\

nat-t.*STATE_QUICK_R2.*IPsec SA established::YES
alice::ping -c 1 PH_IP_BOB::\

64 bytes from PH_IP_BOB: icmp_seq=1::YES
moon::tcpdump::IP sun.strongswan.org.4500 > \

moon.strongswan.org.*: UDP::YES

evaltest.datevaltest.dat
sun::ipsec auto --status::\

nat-t.*STATE_QUICK_R2.*IPsec SA established::YES
alice::ping -c 1 PH_IP_BOB::\

64 bytes from PH_IP_BOB: icmp_seq=1::YES
moon::tcpdump::IP sun.strongswan.org.4500 > \

moon.strongswan.org.*: UDP::YES

posttest.datposttest.dat
sun::ipsec setup stop
alice::ipsec setup stop
moon::iptables -t nat -F

posttest.datposttest.dat
sun::ipsec setup stop
alice::ipsec setup stop
moon::iptables -t nat -F

pretest.datpretest.dat
moon::iptables -t nat -A POSTROUTING -o eth0 \

-s 10.1.0.0/16 -j SNAT -–to-source PH_IP_MOON
alice::ipsec setup start
sun::ipsec setup start
alice::sleep 5
alice::ipsec auto --up nat-t

pretest.datpretest.dat
moon::iptables -t nat -A POSTROUTING -o eth0 \

-s 10.1.0.0/16 -j SNAT -–to-source PH_IP_MOON
alice::ipsec setup start
sun::ipsec setup start
alice::sleep 5
alice::ipsec auto --up nat-t

description.txtdescription.txt
The roadwarrior alice sitting behind the NAT router
moon sets up a tunnel to gateway sun. UDP encapsu-
lation is used to traverse the NAT router. The NAT-
ed host alice pings client bob behind gateway sun.

description.txtdescription.txt
The roadwarrior alice sitting behind the NAT router
moon sets up a tunnel to gateway sun. UDP encapsu-
lation is used to traverse the NAT router. The NAT-
ed host alice pings client bob behind gateway sun.

The three phases pretest, evaltest and posttest are controlled by a script running on
the host system. The commands are executed on the various UML hosts using ssh
(secure shell), e.g.

ssh root@alice ipsec setup start

At the end of each test a selection of log and status files is copied from the UML
instances back to the host system using ssh and scp (secure copy).

6.3 Display of Test Results

For each test scenario a HTML page is automatically created and copied together with
the most relevant configuration, log and status data to the UML web server winnetou
that has by default the IP address 192.168.0.l50.

Figure 18: Test results for NAT-T scenario published on winnetou

As the sample screen shot in figure 18 shows, all relevant information pertinent to a
given test scenario can be conveniently accessed and examined using a standard web
browser, without the need to configure a web server on the host system itself. Just do
not forget to include winnetou in the list of started UML instances!

Reprint of LinuxTag2005 Paper 16

The next web page depicted in figure 19 is located one hierarchy level higher and
aggregates the results from the individual tests. Currently 35 tests covering various
strongSwan features have been defined. Depending on the hardware of the underlying
host system a full automated test run takes between 30-60 minutes. With one glance
it can then be verified if a software release has passed all regression tests.

Figure 19: Overview on completed regression tests

The latest strongSwan scenarios are available from www.strongswan.org/uml/.

7 Conclusions

In a short tour we have presented to you the advanced features of the Linux
strongSwan IPsec solution. In our opinion, the strongSwan distribution unfolds its full
strength in a certificate-based public key infrastructure environment, preferably
augmented by a smartcard-based private key management.

A unique feature offered by strongSwan is the possibility to define sophisticated IPsec
policies based on group attributes that can be securely deployed by putting them into
in short-lived X.509 attribute certificates. In future strongSwan releases we want to
extend this capability.

Since its first release in January 2005, the on-line collection of strongSwan test
scenarios has been visited by many people looking for solutions to their VPN setup
problems. The interactive UML simulation mode is also an excellent tool for exploring
various VPN scenarios.

Reprint of LinuxTag2005 Paper 17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

